
BROUGHT TO YOU IN PARTNERSHIP WITH

1

334

REFCARD | AUGUST 2022

Getting Started
With Distributed SQL

ANDREW OLIVER
SR. DIRECTOR OF PRODUCT MARKETING, MARIADB

CONTENTS

• About Distributed SQL

• How Distributed SQL Works

• Shared Characteristics of
Distributed SQL Databases

• Differences Between Distributed
SQL Databases

• Evaluating Distributed SQL
Databases

• Cost Considerations

• Learn More

Developers building mission-critical applications that require data

integrity, high read/write throughput, and 24/7 global availability with

little or no downtime or maintenance windows require a new type of

database. Older relational systems fail to meet these needs in terms

of scalability, availability, resilience, or performance under load.

NoSQL databases do not offer the robust functionality, standard query

language, or transactional integrity required for systems of record.

This Refcard aims to acquaint you with distributed SQL database

technology, how it works, the problems and types of applications it

solves, and how to evaluate different offerings.

ABOUT DISTRIBUTED SQL
Distributed SQL databases combine the resilience and scalability of

a NoSQL database with the full functionality of a relational database.

They distribute data and processing across multiple servers,

containers, or virtual machines (VMs). They offer the same ACID

guarantees of traditional relational database management systems

(RDBMSs) along with the scale and availability of a distributed

database. Compared to traditional relational databases, they offer

greater scale, reliability, and larger database sizes. Compared to

NoSQL databases, distributed SQL offers more robust functionality

and consistency. Inherent to distributed SQL databases is the use of

SQL as a standard query language.

Distributed SQL databases are designed to be general-purpose

operational databases and are most useful as operational stores where

scale, availability, and disaster recovery requirements exceed the

capabilities of a traditional relational database. For example, Samsung

uses a distributed SQL database to store its customer information for

their Samsung cloud service, a photo and information service similar to

Apple's iCloud. ShortStack uses a distributed SQL database to handle

their user data for running online contests.

Example use cases include:

E-commerce data User interaction, transaction, product

Financial services Trade and transaction, fraud prevention, customer
and account information

General business Supply chain, inventory, financial, customer and
account information

Distributed SQL databases are distinct from some other types of

nontraditional relational databases. For instance, Amazon Aurora

and Google Alloy allow only a single writer with many replicas or two

writers (multi-master) with no additional replicas. Aurora relies on

shared storage for reliability and scalability. The term "NewSQL" was

previously used to be more inclusive of other types of databases,

including in-memory databases like VoltDB.

https://go.mariadb.com/21Q3-WC-GLBL-DBaaS-Xpand-Evaluate-Distributed-SQL-Solution-DB1107_LP-Registration.html?utm_source=dzone&utm_campaign=refcard

XPAND YOUR
EXPECTATIONS
Distributed SQL now available in SkySQL

Get started with a $500 credit:

SkySQL is the only DBaaS capable of deploying MariaDB as a distributed SQL database for
scalable, high-performance transaction processing or as a multi-node columnar database for
data warehousing and ad hoc analytics. SkySQL makes it easy to start small and scale when

needed, as much as needed – whether it’s the result of continued business growth or an
exponential surge (e.g., successful Black Friday/Cyber Monday promotions).

mariadb.com/trysky

https://mariadb.com/products/skysql/get-started/?utm_source=dzone&utm_campaign=refcard

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH DISTRIBUTED SQL

REFCARD | AUGUST 2022 3

While keeping all or most data in memory can lead to lower latency and

is good for specialized use cases, it is not cost effective for applications

at a greater level of scale. Some NewSQL databases are actually

analytical stores whereas distributed SQL databases are primarily

transactional.

HOW DISTRIBUTED SQL WORKS
Distributed SQL databases use a hashing algorithm to assign writes to

different units called partitions (or slices in some databases). Figures

1 and 2 show how those partitions are distributed among multiple

compute nodes such as VMs, containers, or physical hardware. Each

partition is replicated to at least two nodes (generally more).

While this shares some similarity with partitioning or sharding in non-

distributed databases, it is automatically assigned by hash rather than

value ranges and automatically balanced by the database rather than

operator intervention.

Figure 1

Figure 2

When a client reads from a distributed SQL database, the database

computes the hash and selects one or more nodes to surface the

requested data.

Likewise, queries may also be similarly distributed among multiple

nodes in the database. Because data is distributed, reads can pull from

multiple storage devices at the same time. In order to ensure data is

consistent when written or updated, the database uses a type of

distributed transaction protocol similar to two-phase commit.

Modern distributed SQL databases primarily use a consensus algorithm

such as Paxos or Raft. These protocols coordinate membership in the

cluster along with ensuring that data is written to the correct nodes in

order to guarantee data consistency and reliability.

Distributed SQL databases work best in the cloud if replicas are

distributed among cloud availability zones (or different racks in private

data centers). In the event a zone or region becomes unavailable, a new

leader is elected in one of the remaining zones or regions.

Data is copied from surviving replicas to existing nodes to maintain

fault tolerance and data distribution (see Figures 3 and 4). If new nodes

are added, the data is rebalanced among the new nodes, increasing

distribution and performance.

Figure 3

Figure 4

Some databases support distributing replicas or partitions across

geographic regions. This significantly increases latency and impacts

overall performance. To address this, an eventually consistent latency-

tolerant replication protocol is used across data centers (see Figure 5).

Figure 5

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH DISTRIBUTED SQL

REFCARD | AUGUST 2022 4

SHARED CHARACTERISTICS OF
DISTRIBUTED SQL DATABASES
While no two distributed SQL database products are exactly alike,

they do have shared characteristics that distinguish them from other

types of databases. First and foremost, distributed SQL databases

are operational stores as opposed to analytical stores. Though some

distributed SQL databases are combined with analytical stores, that

functionality is outside of distributed SQL itself — similar to how some

traditional relational databases supply full-text search.

RELATIONAL MODEL
Distributed SQL databases use a relational model, in which:

• Data is represented in tables, rows, and columns

• Records are rows and fields are columns

• Each row is identified by a unique identifier called a primary key

• Data is joined between tables by shared values called foreign keys

• A unique identifier, called a primary key, identifies each row

• Shared values, called foreign keys, join data between tables

As with some traditional relational databases, the underlying storage

may be substantially different than what is represented:

Figure 6

Despite the similarity and intentional compatibility, there are often

differences in how data is modeled compared to traditional relational

databases. The most obvious is that sequences are highly discouraged

because generating a sequence across a distributed cluster creates a

bottleneck that hampers scalability and performance. Instead, natural

keys or randomly generated unique keys are preferred.

GENERAL ARCHITECTURE
Distributed SQL databases are based on the same general architecture.

Data is stored on multiple nodes. Writes are balanced between those

nodes and assigned via a hashing algorithm, while reads are likewise

balanced. Data is replicated to more than one node, so a distributed

SQL database can survive the loss of one or more nodes. Writes and

updates are handled via a distributed transaction that is coordinated

among nodes. Some combination of client-side proxies or a load

balancer directs traffic between database nodes.

ACID TRANSACTIONS
Unlike other distributed database technologies (i.e., NoSQL),

distributed SQL databases are designed for systems of record. They

supply transactional integrity and strong consistency from the ground

up with coordinated writes, locked records, and other methods such as

multi-version concurrency control.

SYNCHRONOUS REPLICATION
Distributed SQL databases use synchronous replication between nodes

to ensure transactional integrity with continuous availability. When

a write takes place, each node acknowledges the write. Other similar

types of databases, like Amazon Aurora, use asynchronous replication,

which could cause inconsistent writes between nodes.

QUERY DISTRIBUTION
Compared to client-server database technologies, distributed SQL

database queries are replicated to any number of database nodes.

Additionally, data can be pulled from multiple nodes and aggregated

into a single result set. Some distributed SQL databases even

distribute processing parts of complex queries (i.e., joins, subqueries)

to different nodes.

DIFFERENCES BETWEEN DISTRIBUTED
SQL DATABASES
While the basic architectural approach of distributed SQL databases

is easily recognized and distinct from both NoSQL and traditional

relational databases, there are some key differences between them.

DELIVERY (CLOUD/DBAAS, ON-PREMISES, HYBRID)
At this time, every distributed SQL database can be installed in the

cloud; however, not all of them offer a fully managed database-as-

a-service (DBaaS). Some distributed SQL databases are available in

DBaaS formation, as a customer install, and even hybrid installations

where the DBaaS can manage local instances and replicate between a

private data center and a cloud installation, and vice versa.

COMPATIBILITY
Distributed SQL databases strive to be compatible with existing

traditional RDBMSs. However, similar to the previous generation of

relational databases, there are differences in dialects, data types, and

extended functionality like procedural languages. Leading distributed

SQL databases have varied approaches to address compatibility.

MariaDB Xpand, for example, maintains compatibility with both

MySQL and MariaDB databases. This compatibility includes both wire

and SQL dialect, which means you can use most of your existing tools

and frameworks that work with MySQL or MariaDB. CockroachDB

attempts to be wire compatible with PostgreSQL but reimplements

the query engine to distribute processing. This increases compatibility

but reduces some opportunity for distributed query processing and

tuning. For complex applications migrating to distributed SQL, an

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH DISTRIBUTED SQL

REFCARD | AUGUST 2022 5

existing traditional RDBMS front end in compatibility mode may make

the most sense, particularly if you are using extended features of a

traditional database. However, if you're running in production over

the long term, migrating to a performance topology is likely a better

option than using an existing front end.

CONSENSUS ALGORITHM
In the early 2010s, NoSQL databases were widely popular for their

scalability features. However, they relaxed transactional consistency

and removed key database features, including joins. While adoption

of NoSQL was swift for applications where scale and concurrency were

the most important factors, most mission-critical applications that

required transactional integrity remained in client-server databases

like Oracle, MySQL, PostgreSQL, and SQL Server.

Ongoing research into consensus algorithms (e.g., Paxos Raft) enabled

the creation of better horizontally scaling databases that maintain

consistency. There are academic arguments over which is better,

but from a user standpoint, they serve the same basic purpose. This

research and other developments made some of NoSQL's compromises

unnecessary: It's no longer necessary to rely on "eventual consistency"

or BASE instead of strong or ACID-level transactions.

SCALABILITY
The distributed SQL architecture enables horizontal scalability;

however, implementation details have a large impact on production

reality. The key to scalability is how data is assigned to nodes and

how data is rebalanced over time. Additionally, load balancing plays a

central role in both scalability and performance. Some databases

rely on the client to "know" which node to address. Others require

traditional IP load balancers or use more sophisticated database

proxies that understand more about the underlying database.

FAULT RECOVERY
All distributed SQL databases are largely fault-tolerant. However, they

differ in what happens during a fault. Does the client have to retry the

failed transactions, or can they be recovered and replayed? How long

does it take for the database to rebalance data between nodes in the

event one is lost?

KUBERNETES
The major distributed SQL implementations support Kubernetes,

but implementation and performance varies between them based

on how IOPS are handled. While some allow bare-metal installations,

self-healing and other functionality is limited or lost when running

without Kubernetes.

MULTIMODAL
Strictly speaking, multi-modal functionality is not a distributed SQL

function but is based on whether ancillary processing or data storage

types are provided with the database and how consistency guarantees

apply to that functionality. Examples include column storage, analytics,

and document storage. If a distributed SQL database provides these

additional features, it's possible to combine real-time analytics along

with operational capabilities.

COLUMNAR INDEXES/MIXED WORKLOAD SUPPORT
Distributed SQL databases are operational or transactional databases

by nature. However, by adding columnar indexes, distributed SQL

databases can handle real-time analytical queries. Consider the case

of e-commerce: The majority of queries will be light reads and writes,

but eventually, someone will want to report on the sales or types

of customer engagements — or even offload summaries into a data

warehouse. These are long-running analytical queries that may benefit

from a columnar index.

Most distributed SQL databases do not yet have this capability, but it

can be expected to become more commonplace as developers look to

consolidate and simplify their data architecture.

Figure 7

EVALUATING DISTRIBUTED SQL
DATABASES
The most important aspect of designing a proof of concept (PoC) is

to focus on data and queries that closely match your actual

application. There is a temptation to test the platform's limits with

unrealistic queries (e.g., 15 joins with six tables that pulls back 1M

rows or a single row point query) and measure the performance

between different systems. Database technologies make trade-offs

and optimize for particular usage patterns. In the case of distributed

SQL, the database optimizes for throughput of transactional volume.

In designing a PoC, actual production data and application traffic is

optimal. Second best is a simulation that closely matches the general

pattern in terms of table structure, query complexity, and proportion

of reads and writes. It's important to set goals beyond a single factor,

such as pure database latency, and focus on overall app performance

at nominal and peak usage. This means that if at nominal use, a

traditional database offers 1ms latency but 1,000ms at peak usage,

and the application performs at 4s but has a performance goal of 3s,

it's not meeting the objective. If a distributed SQL database performs at

15ms under nominal usage but performs at 20ms at peak usage — and

the application meets its 3s goal — it has met the requirement.

In generating load, it is essential to ensure that the infrastructure can

generate sufficient load to test the database system capacity at the

intended performance goal. For instance, if observed latency increases

significantly at 1,000 transactions per second, but overall resource

utilization of disk, CPU, and network do not appear to be bottlenecked,

it may be that the load generation infrastructure is maxed rather than

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH DISTRIBUTED SQL

REFCARD | AUGUST 2022 6

the system under test. It is equally essential to ensure the client network

and other infrastructure between the load generator and system under

test have sufficient capacity.

COST CONSIDERATIONS
Evaluating cost is more complex than simply reviewing licensing, cost

per hour, or any other vendor-advertised measure. It is important to

consider the entire cost of the system, including factors such as:

• Staff training

• Ongoing maintenance

• Risk of loss of service during a failure

• Downtime during upgrades

• Support and support quality

• IOPS for cloud services

LEARN MORE
Distributed SQL databases are one of the hottest new technologies in

cloud computing. They offer transactional integrity without sacrificing

scalability and are built for reliability in the cloud. This new technology

makes it possible to bring applications that require a system of record

to the cloud. The following resources provide additional information on

distributed SQL databases:

• "Distributed SQL" – https://en.wikipedia.org/wiki/Distributed_SQL

• "What You Need to Know About Distributed SQL" –

https://dzone.com/articles/what-you-need-to-know-about-

distributed-sql

• "Distributed SQL Essentials" Refcard – https://dzone.com/

refcardz/distributed-sql-essentials

WRITTEN BY ANDREW OLIVER,
SR. DIRECTOR OF PRODUCT MARKETING, MARIADB

Andrew C. Oliver is the Senior Director of
Product Marketing for MariaDB. He is a prolific
writer about technology — particularly open
source and distributed database technologies. In
the past, he served on the board of the Open Source Initiative,
founded Apache POI and was an early part of JBoss, Inc. before its
acquisition by Red Hat. Find him over on Twitter @acoliver.

600 Park Offices Drive, Suite 300
Research Triangle Park, NC 27709

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2022 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

https://en.wikipedia.org/wiki/Distributed_SQL
https://dzone.com/articles/what-you-need-to-know-about-distributed-sql
https://dzone.com/articles/what-you-need-to-know-about-distributed-sql
https://dzone.com/refcardz/distributed-sql-essentials
https://dzone.com/refcardz/distributed-sql-essentials

